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Abstract. High-resolution Brillouin spectroscopy was used to study the elastic properties of 
ferroelastic LiRb,(S04)3 1 .5H2SO4 (LRSHS). The velocities, linewidths and intensities of 12 
acoustic modes were measured in the temperature range from 100 to 300 K.  The critical 
temperature for the 4mm + mm2 transition was found to be approximately 132 K.  All non- 
zero components of the elastic stiffness tensor of the para- and ferroelastic phases were 
determined. The frequency of the pure transverse mode associated with the cS elastic 
constant was found to be strongly temperature-dependent in the vicinity of T,. In order to 
explain all experimental features a mean-field model was postulated with a free-energy 
expansion in terms of an order parameter (which drives the transition), spontaneous strain, 
the remaining strain components and polarisation. It was demonstrated that a coupling term 
involving spontaneous strain and polarisation appears to be the reason for the observed 
incomplete softening of the c66 mode as T-, T,. It also appears to agree with the observed 
crossover from a square-root to a linear dependence of polarisation on temperature. More- 
over, coupling between the spontaneous strain and the other strain components results in 
a weak temperature dependence of the elastic constants c,, (i, j # 6), in agreement with 
experimental observations. 

1. Introduction 

In the last few years ferroelastic crystals have been the subject of a large number of 
theoretical and experimental studies because of their interesting physical properties and 
possible applications (Wadhawan 1982, Cummins 1983, Toledano et a1 1983). In recent 
papers we have reported on Brillouin scattering studies of two ferroelastic materials: 
LiCsS04 (Mrbz et a1 1987) and LiKS04 (Mroz et a1 1989). The objective of this paper 
is to report Brillouin scattering experiments on a new ferroelastic material, 
LiRb5(S04)3. 1 .5H2S04 (LRSHS), and to explain the experimental results using mean- 
field Landau theory involving appropriate thermodynamic variables. 

At room temperature, LRSHS belongs to the tetragonal system and has lattice par- 
ameters a = b = 7.740 A and c = 7.442 A (Pietraszko 1987). As was recently shown 
from pyroelectric, dielectric and thermal studies (Wolejko eta1 1988b), LRSHS undergoes 
a structural second-order phase transition between two polar point groups at about 
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135 K. The ferroelastic character of this transition was confirmed by direct observation 
of domain structure reorientable under the action of appropriate mechanical stress 
(Wolejko et a1 1988a). Since there was a lack of structural information about LRSHS, we 
have recently proposed a procedure for determining its low-temperature point group 
(Mroz et al 1988) from the temperature dependences of the Brillouin line shifts of 
the phonons propagating in the directions of the shear planes [ l o l l  and [ l O ' i ] .  We 
consequently found that LRSHS undergoes a ferroelastic phase transition from the (high- 
temperature) tetragonal point group 4mm to the (low-temperature) orthorhombicmm2. 
It is not possible at this stage to state conclusively whether this is a purely ferroelastic or 
a pseudo-ferroelastic phase transition, but we tend to favour the latter eventuality. 

In the present experiment we have measured the temperature dependences of the 
frequency shifts and linewidths of the 12 acoustic modes, which allowed us to calculate 
the temperature changes of all non-zero components of the elastic stiffness tensor of the 
prototype phase 4mm and the ferroelastic phase "2. Section 2 details the experimental 
procedure adopted while § 3 summarises the experimental results found. In 8 4 we 
present a theoretical model based on the mean-field approximation using a Landau- 
type free-energy expansion involving an order parameter (which drives the transition), 
spontaneous strain, the remaining strain components and polarisation. Cross-terms that 
couple spontaneous strain with the other variables, especially polarisation, will be shown 
to play an important role in explaining the observed behaviour. 

2. Experimental procedure 

Colourless single crystals of LRSHS were grown isothermally at 310K from an acid 
aqueous solution of pH s 1. The exact composition of the crystals was confirmed using 
nuclear absorption spectroscopy. Samples of three different orientations were prepared 
in the form of cubes (5  x 5 x 5 mm3) to measure the sound velocities along the crys- 
tallographic axes and the bisectors of these axes. 

The Brillouin spectrometer has been described in detail elsewhere (Ahmad et a1 
1982). The incident light was provided by a stabilised single-mode argon-ion laser (CR- 
52) operating at A = 514.5 nm with an output of about 100 mW polarised perpendicularly 
to the scattering plane. The scattered light was analysed at 90" with a peizoelectrically 
scanned triple-pass Fabry-Perot interferometer (Burleigh RC-110) utilising free spectral 
ranges (FSR) of 25.03 and 16.50 GHz at a finesse of about 60. Spectra were accumulated 
with a photon-counting data-acquisition and stabilisation system (Burleigh DAS-1). 

Sound velocities were calculated from the measured frequency shifts A V  using the 
Brillouin equation, which in the case of right-angle scattering geometry takes the form 

U = AAv(n; + nz)-'/2 (1) 

where A is the wavelength of the incident light, and n, and n, are the refractive indices 
for the incident and scattered light, respectively. Refractive indices of LRSHS were found, 
at room temperature, by comparing the crystal samples with several liquids (Cargille 
Labs) of known refractive indices. We found n, or nj = 1.426 and n, = 1.468 F 0.001. 
All Brillouin measurements were performed in the temperature range from 100 to 300 K 
using the cryostat described in a previous publication (Mroz et a1 1987). The temperature 
of the sample was regulated with a stability of k0.03 K. 
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3. Experimental results 

Table 1 contains expression of pu2 as a function of the elastic constants for the tetragonal 
(4") and orthorhombic ("2) phases using standard notation (Vacher and Boyer 
1972). These relations were derived from solutions of the equation of motion (Landau 
and Lifshitz 1959) for the three acoustic waves propagating in the direction Q given 
by 

I C i , k / q j q k  - puZad I = (2) 
where q,, q k  are direction cosines of Q ,  p is the density of the crystal (2.81 g ~ m - ~ )  and 
Cr,k/ are elastic stiffness tensor components. 

We have observed 12 of the 18 Brillouin modes listed in table 1. The measured 
frequency shifts versus temperature for the pure longitudinal (L) and pure transverse (T) 
modes are plotted in figure 1. We found the frequency shifts of the longitudinal modes 
y l ,  y 4  and y7 as well as of the pure transverse modes y 3  and y 5  to be slightly 
temperature-dependent whereas the frequency of the pure transverse mode y2 was 
strongly temperature-dependent with frequency shifts from 5.06 GHz at room tem- 
perature, to 2.11 GHz at 132 K. The observed temperature behaviour is understood 
since the appearance of the soft acoustic mode during the 4mm+ mm2 transition is 
associated (Toledano et a1 1983) with the elastic constant c66 and is directly related to 
the y2 modes (see table 1). In addition, we observed an increase in relative intensity 
of this mode together with the broadening of the Brillouin line, as shown in figure 2, 
after deconvolution with the 0.50 GHz instrumental linewidth. 

The temperature dependences of the frequencies of the remaining modes are plotted 
in figure 3. The temperature behaviour of the y15 and yls modes was recently reported 
(Mrbz et a1 1988) and the observed softening may be explained since above the critical 
temperature T, (-132 K) these modes are related to pu2 = &(q4 + c66). The frequency 
of the ylo mode is slightly temperature-dependent up to the transition point and increases 
distinctly in the ferroelastic phase. Quasi-longitudinal modes y13 and y16 show a linear 
increase in frequency shifts as T+ T, and the splitting of their values observed below 
T, is understood since for the orthorhombic phase we have cll # c22, c44 # cs5 and 
~ 1 3  # ~ 2 3 .  The frequency shift of the y17 quasi-transverse mode increases linearly with 
decreasing temperature in the entire region studied. 

The temperature dependences of the elastic constants calculated for both the para- 
and ferroelastic phases from the observed shifts of pure L and T modes are plotted in 
figure 4. The cll, cZ2 and c33 elastic constants are essentially temperature-independent 
and increase with decreasing temperature (as expected). The c66 elastic constant is 
strongly temperature-dependent. The related sound velocity changes from 1270 m s-l 
at room temperature to 165 m s-l at T,. It shouid be emphasised here that c66 does 
not vanish at T,, signifying an incomplete mode softening, which will be analysed 
theoretically in 0 4. The temperature dependences of the elastic constants c12, c13 and c23 
are plotted in figure 5 .  The ~ 1 3  elastic constant does not change with temperature in 
either the para- or ferroelastic phases. The c12 component increases slowly as T 4  T, 
and exhibits a strong temperature dependence ('hardening') in the ferroelastic phase. 
The solutions of pu2(c,) for the ylo (below T,), y13 and y16 modes give two sets of values 
for c12, ~ 1 3  and ~ 2 3 .  We discard the incorrect determinations of these components by 
checking the consistency of the velocity extrema in the pure mode directions (Vacher et 
a1 1972, Brugger 1965). In table 2 we list the precise values of all non-zero elastic 
constants at 300,132 and 100 K. 
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T ( K )  
Figure 1. Temperature dependence of the Brillouin shifts for the pure longitudinal (L) and 
pure transverse (T) modes yt (i = 1 , 2 , 3 , 4 , 5 , 7 ) .  
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Figure 2. Temperature dependence of the full width at half-maximum (FWHM) and the 
integrated intensity I,,, of the y z  soft mode. 

As is well known, the elastic constants measured by the Brillouin scattering technique 
correspond to the adiabatic conditions and electric neutrality, whereas the mean-field 
approximation (as applied in the present paper) refers to the isothermal elastic constants 
at a constant electric field. Thus, it was necessary to evaluate the piezoelastic and 
isothermal-adiabatic corrections. We find that only the c44 and cjj elastic constants can 
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Figure 3. Temperature dependence of the Brillouin shifts for quasi-longitudinal (QL) and 
quasi-transverse (QT) modes y, (i = 10,13,15,16,17, 18). 
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Figure 4. Elastic constants c4 related to the pure modes plotted as a function of temperature. 
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Figure 5. Temperature dependence of the cl2, cI3 and cZ3 elastic constants. 
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Table 2. Elastic constants Of  LRSHS at 300, 132 (T,) and 100 K (in units of 10" N m-'). 

Elastic Tetragonal phase Orthorhombic phase 
constant (300 K) T, = 132 K (100 K) 

c11 

c22 

c33 

c44 

c55 

e66 

CIZ 

c13 

c23 

3.80 2 0.10 
3.80 
4.17 
0.70 2 0.07 
0.70 
0.45 
2.00 rt 0.15 
1.10 
1.10 

4.10 
4.10 
4.65 
0.70 
0.70 
0.08 
2.30 
1.10 
1.10 

4.20 
4.10 
4.70 
0.72 
0.70 
0.22 
3.15 
1.10 
1.40 

be affected by the piezoelectric correction. Using the temperature dependences of the 
piezoelectric moduli d,, and dielectric permittivity we estimate this correction to be less 
than 5%.  Since experimental thermal expansion data for LRSHS are not available we 
could not estimate the isothermal contribution to the measured cll, cZ2, c33, c12, ~ 1 3  and 
~ 2 3  elastic constants. However, the isothermal-adiabatic correction is generally of order 
1-3% in these types of materials (Nye 1957). Taking this into account, together with the 
fact that the c66 elastic constant is related directly to the soft acoustic mode, which is not 
affected by any of these corrections, we will use the values of elastic constants calculated 
directly from the observed Brillouin line shifts, which are consistent with the accuracy 
of our measurements. We neglect the temperature dependence of crystal density and 
refractive indices for similar reasons. 

4. Theoretical model 

Based on the results described in the experimental part of this paper, it is assumed that 
e6 is the spontaneous strain (henceforth denoted by es) ,  which is either the primary (in 
the purely ferroelastic case) or a secondary (in the improper ferroelastic case) order 
parameter responsible for the structural phase transition under consideration. Figures 
4 and 5 clearly demonstrate that virtually all the elastic coefficients c,, are affected by the 
critical behaviour of e,. Therefore, it can be deduced that there is significant coupling 
between the spontaneous strain e, and the remaining components of the strain tensor e, 
(i = 1,2,  3,4,5). Figure 6 illustrates the temperature dependence of the dielectric 
polarisation and its square for the crystal in a broad temperature range around the 
critical temperature for this structural phase transition. The actual measurements of 
polarisation were obtained by integrating the pyroelectric coefficient, which was recently 
analysed in LRSHS (Wolejko et a1 1988b) and involved a change of spontaneous polar- 
isation AP,,, , and not its value in absolute units. These results indicate averypronounced 
effect on AP,,, in the vicinity of the transition temperature T = 132 K. A crossover from 
a square-root dependence on T at high temperatures ( T  > T,) to a linear dependence 
on Tat  low temperatures ( T  < TJ is quite apparent. It should be emphasised here that 
a transition from a non-polar to a polarised phase may take place at a much higher 
temperature, say Tp (possibly even above the melting point), and as such is not of 
immediate interest to us. The actual measurements of polarisation are reliable only up 
to 400 K since above that temperature the samples become conductive. 
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Figure 6. The temperature dependence of (a )  measured polarisation AP,,, and (6) measured 
polarisation squared (AP,,,)* between 80 and 300 K ,  following the data of Wolejko et a1 
(1988b) as per text. 

The structural phase transition under consideration here appears to be of second 
order since calorimetric measurements (Wolejko et a1 1988b) have not found evidence 
of latent heat of transition and the specific heat curve C&T) shows no discontinuities 
but only a cusp at approximately 137 K. It is likely that the 5 K difference between T, 
obtained using calorimetry and using Brillouin scattering can be attributed to different 
experimental techniques and their inaccuracies. Moreover, pyroelectric (Wolejko et a1 
1988b), dielectric (Wolejko et a1 1988a) and scattering measurements (present paper) 
indicate no signs of thermal hysteresis effects or metastability. 

Following the general approach to this problem outlined by Toledano et a1 (1983) 
and its specific applications such as those of Errandonea (1980), the appropriate phenom- 
enological free-energy expansion can be written as follows 

F =  Fi(Q) + F2(eS7 ei)  + F,(P) + F12(Q, e , )  + Fz3(es, f') + F13<Q, f') ( 3 )  

where it has been assumed that Q is the primary order parameter for the transition, 
which transforms according to the irreducible representation E of the 4mm point group. 
As will become clear shortly, the assumption that e6 is the primary order parameter (and 
thus that we deal with a purely ferroelastic transition) leads to a difficulty in explaining 
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the reduction in the slope of P as a function of T and the simultaneous incomplete 
softening of c66. The terms of equation (3) are given as follows. The critical part is 

where A2 = a ( T  - To),  A4 > 0 ,  as required for a second-order transition. The term 
F2(e,, e,) is expanded to fourth order in elastic strains 

F 2 ( e s ,  e,) = c;,e: + 

F i ( Q )  = (A2 /2 )Q2  + (A4 /4 )Q4  ( 4 )  

+ B c;e,e, + E c!,e? 
r # s  1 ] (+SI  1 (+ s) 

I +I 

+ e i  E ~ ! , ~ e ,  + E C;kere]ek + eT E c4Ol,,eIel + c X  ( 5 )  
, ( + S I  1.1 k(+s) b l ( + S )  

where all the expansion coefficients are assumed constant so that the onset of criticality 
is brought about solely by F l ( Q ) .  Next, F3(P) is a fourth-order free-energy expansion 
of spontaneous polarisation 

where B 2  = b ( T  - T p ) ,  b > 0 ,  B4 > 0 and T p  % T,. Close to Tp where P is virtually 
decoupled from other degrees of freedom, equation ( 6 ) ,  through minimisation of F3( P ) ,  
yields P = 0 for T > Tp and a square-root dependence P = P,(T)  = k [ - b ( T  - Tp)/  
2B4]'/2 for T S Tp. Much below Tp ,  e.g. close to T,, it is possible to expand P,(T)  in a 
polynomial series 

F3(P)  = B 2 P 2  + B 4 P 4  ( 6 )  

In fact, since T, < Tp we can introduce the well known concept of molecular field 
(Jackson 1962) to replace higher-order non-linearities in the expansion of F3 given by 
equation ( 6 )  so that a minimisation of F3 with respect to P would produce the desired 
value of P,(T) .  Thus, 

where P,( T )  = xEe f f (  T )  and x is a mean-field dielectric coefficient of the sample. 

ducible representation, so they are allowed to be coupled bilinearly such that 

F3 == Bx-' P2  - Eef f (  T ) P  (8) 

The order parameter and spontaneous strain transform according to the same irre- 

F12<Q, e , )  = P Q ~ , .  ( 9 )  

Fi3(Q, P )  = ( v / 2 ) Q 2 P 2  (10) 

F23(es, P )  = (i1/2)e:P2. (11) 

dF/dQ = A 2 Q  + A 4 Q 3  + pes + vQP2  = 0 (12) 

aF/aP = x - ' P  - E e f f ( T )  + AeiP + v Q 2 P  = 0 (13) 

P = P , ( T ) / ( l  + Axe? + v x Q 2 )  (14) 

The lowest-order terms that are allowed, by symmetry principles, to reflect the 
couplings between polarisation and Q or e, are biquadratic. Therefore, 

and 

Minimisation of the free energy produces the following set of equations for the 
equilibrium values of the thermodynamic variables: 

which implies that e, = 0 whenever Q = 0. Then 

which implies that P = P,( T )  when Q = e, = 0 and 

otherwise. Consequently, for the observed reduction in the slope of P( T )  below T,, it 
must be required that he: + v Q 2  > 0. Next 
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Hence, the equilibrium value of e, depends on couplings to other strain components and 
close to T, is almost linearly dependent on Q. Finally 

dF/de, = 2c:e, + cieJ + 3cSlef + + 3 cplkelek + 2e: E c ~ l l s e ,  = 0. 
/ ( f S )  i , k ( # s )  J ( # S )  

(16) 
The second-order elastic coefficients are calculated in the usual way as 

and 

c2, = d'F/dei = 2 4 ,  + l2c:,ei + AP2 + 2 c!,,e, + c$,e,eJ . 

(20) 
, (#SI  (31 1 

4.1. The analysis above T,  (the actual transition temperature) 

This is fairly simple. There, Q = e, = 0 and P = P,(T).  The experimentally measured 
polarisation, APexp, equals APexp = P, - Po in this particular temperature regime. Here 
Po is a reference polarisation. In our case Po = P,( T = 128 K), as can be seen from the 
linear fit on the right-hand side of figure 6(b ) .  Outside the immediate vicinity of T,, 
figure 6(b )  indicates that (APexp)2 is a linear function of temperature. This may be at 
least roughly accounted for by a Taylor expansion of P, given by equation (7). However, 
as we approach T,  from above, this approximation becomes less and less acceptable. 
We believe that in the immediate vicinity of T, precursor effects come to play a major 
role in determining the form of APexp( T ) .  More specifically, through equation (14) and 
the fact that Q = e, = 0 at T > T, one could approximate 

where (e:) and (e2) are the mean values of critical fluctuations of the spontaneous strain 
and the order parameter, respectively. It is well known that these quantities increase 
dramatically as the critical temperature is approached. In fact, at T,, (e2) should diverge 
with a critical exponent -1 (using Gaussian approximation), i.e. (e2) cc ( T  - T J ' .  
Thus, it is seen from equation (21) that the closer we get to T, the more dominant is the 
role of critical fluctuations in the form of Pexp (precursor effects). A more detailed 
analysis of this effect is intended in the near future. 

Furthermore, neglecting third- and fourth-order mode-mode coupling in equation 
(16), multiplying the equation on both sides by the compliance tensor s! and summing 
over i allows us to solve it for the remaining strain components: 

e, = 0 or e, = - 2 c ~ / 3 c ~ ,  = e ) .  (22) 

At present, no x-ray or thermal expansion data are available that could indicate if any 
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Table 3. Numerical values of the thermal expansion parameters for the second-order elastic 
coefficients c!,. c,, and c2s (in units of 10" N m-2). 

Elastic 
coefficient T > T, T S  T, T G  T, 

c13 

ul1 = = 0.70 cr44 = 0.70 
aj j  = 0.70 

N , Z  = 2.21 aI2  = 2.33 
y ,z  = -9.9 x 10-4 

(Y*? = 1.12 
y23 = -6.63 X 10. 
(Yl i  = 1.10 
y13 = 0.0 

pll = 3.13 x 10-3 
p2: = 0.0 

p33 = 1.56 x 10-3 

psj = 0.0 
Pq4 = 0.63 X 10-3 

P-66 = 6.03 X 

pZ3 = 2.82 x 10-3 

P I 3  = 0.0 

strain components are in fact non-zero, but this possibility cannot be excluded apriori. 
Then, using equations (17)-(20) we readily find the elastic coefficients as 

cr, = mi, C i f  = E! !  e,, = 0 (23) 

c2s = a 2 s  + Bis(T- T,) + Y2ls(T- Q 2  (24) 

all of which are constant, and 

where all the parameters are displayed in the Appendix. The experimentally determined 
values of these parameters have been summarised in table 3 both for T > T, and for 
T C T,. Once the experimental data for e y ( T )  become available, we will be able to 
calculate the values of the expansion coefficients of the free energy using the formulae 
given in the Appendix. 

4.2. The analysis below T, 

This is more complicated. First of all, since this is a second-order transition and cal- 
culations are done in the mean-field approximation, we have 

e ,  = d , ( T ,  - T)'I2 Q 
d,(T, - T)'i2 

provided Tis sufficiently close to T,. Both T, and the coefficients d, and d, will be subject 
to further determination. Then, assuming some simplifying conditions (Mrciz eta1 1987), 
namely 
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from equation (16) we obtain a simple equation relating e, and e, yielding 

e,  = [(e!)’ + 6 , ( ~ ,  - ~ ) ] l / ’  (27) 

where d i  = -d?(c!,, + 2g2)/3C!; and e,( T )  is subject to further experimentalverification 
once relevant data become available. Substituting equations (25) and (7) into equations 
(12) and (13) yields approximate expressions for dQ and d,: 

d Q  - (bV/2B4) 

To derive an approximate expression for spontaneous polarisation below T, we use 
equation (14) where we substitute the expansion of P,(T)  around T,, i.e. equation (7), 
and insert the relevant formula for e, and Q, i.e. equation (25). This yields for the 
experimentally observed polarisation 

AP,,, = P ( T )  - Po Pt[1 + p l ( T ,  - T )  + . . . ] - Po (29) 

wherepi = P,(T,) andp,  = A(Tp - TC)-’ - k x d ,  - vXdQ. Thisindeedgivesastraight 
line as shown on the left-hand side of figure 6(a) and it also agrees with respect to the 
reduction in the slope of P( T )  below T, as compared to the tangent line just above T,. 

Furthermore, second-order elastic coefficients are found as follows: 

c,, = a,, + PJTC - T )  + Yl,(TC - n2 + . . . (30) 

c,, = a,, + P,,(TC - T )  + . . . 
c,, = 2d,(Tc - T)’/’(c!~, + 2 c!,,s[(ep)2 -t 6,(T, - T)]’/’) 

(31) 

(32) 
I ( f S )  

and 

where all the parameters have been explicitly displayed in the Appendix and their 
numerical values given in table 3. Since the off-diagonal coefficients c,, contain a term 
proportional to e: and another proportional to ek while the diagonal ones c,, do not 
depend directly on e, but only on e f ,  it is expected that the former ones (c,) exhibit a 
more curved temperature dependence while the latter ones (c,,) are fairly linear functions 
of temperature. This is. in fact. borne out experimentally as shown by the results 
presented in figures 4 and 5 ,  In addition, we find that c:? and c& are straight lines within 
1 E I  = 0.1, lending credence to our assumption about the square-root behaviour of e, as 
given by equation (27). Moreover, it is clear that, sufficiently close to T,, c2s is an almost 
linear function of (T ,  - T) as shown in figure 7. However, for temperatures further 
removed from T,, a quadratic non-linearity becomes noticeable as shown in figure 4. 
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-1 0 - 5  r, 5 10 

r-c ( K )  

Figure 7. A close-up view of the temperature dependence of clS in the vicinity of T,. 

It is also easy to see that, because of the coupling with polarisation, c2, exhibits an 
incomplete softening as T-  T,. The condition on the transition temperature T, can be 
derived from the instability condition on F,  i.e. a2F = 0, as 

a(Tc - To)[a!, + ilb(T, - TC)/2B4] = p 2  (34) 
which is a quadratic equation for T, and we have denoted 

We also have a > 0, a!, > 0, B4 > 0 and Tp > T,. Since c2, > 0 for T > T, and it decreases 
as T+ T, from above, it is implied that A < 0 (while v > 0 in equation (14) to give the 
proper behaviour of P(T)) .  Consequently, we see from equation (34) that T, > To. 
Hence, it follows from equation (23) that 

Czs(T,>  = P 2 / G  - To) > 0 (35) 
as required by experiment. 

5. Conclusions 

In this paper we have presented the results of our experimental high-resolution Brillouin 
spectroscopy studies of the elastic properties of the ferroelastic LiRb5(S04)3 + 1 .5H2S04 
crystal. From the velocities of 12 acoustic modes we have found the temperature behav- 
iour of all non-zero components of the elastic stiffness tensor in the range from 100 to 
300 K. In particular, the c66 elastic constant corresponding to the soft mode of this para- 
toferroelasticphase transition was found to decrease to anon-zerominimum as T-+ T, = 
132 K. Also, most of the other elastic constants were substantially affected by the onset 
of the transition. In the second part of the paper we have presented a theoretical model 
based on a Landau-type free-energy expansion involving the order parameter Q, strain 
components e, and ei, and polarisation P. It has been demonstrated that assuming a 
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pseudo-proper character of this ferroelastic phase transition one can consistently account 
for all the main experimental features, i.e. the temperature behaviours of cII,  c,, and c2c 
both above and below T,, especially the incomplete softening of c2, at T,, as well as the 
crossover of the polarisation's dependence on temperature from a square-root to a 
nearly linear function. 

It should be emphasised that for internal consistency of the derivation (agreement 
with experiment) is was crucial that e, was coupled to both Q and P.  If only a bilinear 
coupling between e, and Q were to be included one could not possibly expect an 
incomplete softening of czs. Thus, the coupling between spontaneous strain and polar- 
isation (as a result of P # 0 at and around T,) makes the elastic part of the system show 
incomplete softening. On the other hand, neither polarisation nor spontaneous strain 
can be considered a primary order parameter in this transition. The transition is driven 
by Q. Therefore, all the three parameters and couplings between them are necessary to 
account for all the observed effects. 

The predicted temperature dependences of the spontaneous strain and other strain 
components should be verified experimentally using x-ray measurements in the near 
future. This would greatly help in a more quantitative analysis of the transition since 
one could then extract all the parameters (or at least the most dominant ones) of the 
theory. 

The measurements of the soft mode were carried out on three different samples cut 
from two different crystals. The accuracy of the cut was 0.2", and hence the authors 
exclude the inaccuracy of the cut as a possible reason for the incomplete mode softening 
observed for c2,. One could speculate on other mechanisms which may take place during 
the discussed transition. It might be envisaged that the low-temperature phase is not 
"2, in which case the actual soft phonon does not propagate along one of the inves- 
tigated directions. Another possibility is that e, is coupled to the fluctuations of the order 
parameter or that one of the phases is incommensurate. As of now, however, there exist 
no experimental indications to support such ideas. Consequently, we have presented 
the most feasible scenario which would be compatible with the experimental data. 
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Appendix. Second-order elastic coefficients 

For T > T, we have 
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where the summation is only over k for which e;  # 0. a,, is that of equation (A2) and 

SI, = 3c!Isl/e:. (A81 

P i s  = 12Ci 4 + 2 (g2 + c w l / e :  + 2 A ( p 3 2 P ,  (A91 

a2s is that of equation (A3) and 

[ ( # S I  
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